Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38202399

RESUMO

In agriculture, soil amendments are applied to improve soil quality by increasing the water retention capacity and regulating the pH and ion exchange. Our study was carried out to investigate the impact of a commercial biochar (Bc) and a superabsorbent polymer (SAP) on the physiological and biochemical processes and the growth performance of Chenopodium quinoa (variety ICBA-5) when exposed to high salinity. Plants were grown for 25 days under controlled greenhouse conditions in pots filled with a soil mixture with or without 3% Bc or 0.2% SAP by volume before the initiation of 27 days of growth in hypersaline conditions, following the addition of 300 mM NaCl. Without the Bc or soil amendments, multiple negative effects of hypersalinity were detected on photosynthetic CO2 assimilation (Anet minus 70%) and on the production of fresh matter from the whole plant, leaves, stems and roots (respectively, 55, 46, 64 and 66%). Moreover, increased generation of reactive oxygen species (ROS) was indicated by higher levels of MDA (plus 142%), antioxidant activities and high proline levels (plus 311%). In the pots treated with 300 mM NaCl, the amendments Bc or SAP improved the plant growth parameters, including fresh matter production (by 10 and 17%), an increased chlorophyll content by 9 and 13% and Anet in plants (by 98 and 115%). Both amendments (Bc and SAP) resulted in significant salinity mitigation effects, decreasing proline and malondialdehyde (MDA) levels whilst increasing both the activity of enzymatic antioxidants and non-enzymatic antioxidants that reduce the levels of ROS. This study confirms how soil amendments can help to improve plant performance and expand the productive range into saline areas.

2.
Plants (Basel) ; 11(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36145812

RESUMO

The application of biochar is mostly used to improve soil fertility, water retention capacity and nutrient uptake. The present study was conducted in order to study the impact of biochar at water deficiency conditions on the physiological and biochemical processes of Medicago ciliaris seedlings. Seedlings were cultivated under greenhouse conditions in pots filled with a mixture of soil and sand mixed in the presence or absence of 2% biochar. Plants of uniform size were subjected after a pretreatment phase (72 days) either to low (36% water holding capacity, water potential low) or high soil water potential (60% water holding capacity, water potential high). Pots were weighed every day to control and maintain a stable water holding capacity. In Medicago ciliaris, drought led to a significant reduction in plant growth and an increase in the root/shoot ratio. The growth response was accompanied by a decreased stomatal conductance and a reduction of the net CO2 assimilation rate and water use efficiency. The associated higher risk of ROS production was indicated by a high level of lipid peroxidation, high antioxidant activities and high proline accumulation. Soil amendment with biochar enhanced the growth significantly and supported the photosynthetic apparatus of Medicago ciliaris species by boosting chlorophyll content and Anet both under well and insufficient watered plants and water use efficiency in case of water shortage. This increase of water use efficiency was correlated with the biochar-mediated decrease of the MDA and proline contents in the leaves buffering the impact of drought on photosynthetic apparatus by increasing the activity of enzymatic antioxidants SOD, APX, GPOX and GR and non-enzymatic antioxidants, such as AsA and DHAsA, giving the overall picture of a moderate stress response. These results confirmed the hypothesis that biochar application significantly reduces both the degree of stress and the negative impact of oxidative stress on Medicago ciliaris plants. These results implied that this species could be suitable as a cash pasture plant in the development of agriculture on dry wasteland in a future world of water shortages.

3.
Biochim Biophys Acta Bioenerg ; 1862(12): 148482, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34418359

RESUMO

It is well known that plant responses to stress involve different events occurring at different places of the cell/leaf and at different time scales in relation with the plant development. In fact, the organelles proteomes include a wide range of proteins that could include a wide range of proteins showing a considerable change in cellular functions and metabolism process. On this basis, a comparative proteomics analysis and fluorescence induction measurements were performed to investigate the photosynthetic performance and the relative thylakoid proteome variation in Eutrema salsugineum cultivated under salt stress (200 mM NaCl), water deficit stress (PEG) and combined treatment (PEG + NaCl) as a hyperosmotic stress. The obtained results showed a significant decrease of plant growth under drought stress conditions, with the appearance of some toxicity symptoms, especially in plants subjected to combined treatment. Application of salt or water stress alone showed no apparent change in the chlorophyll a fluorescence transients, primary photochemistry (fluorescence kinetics of the O-J phase), the PQ pool state (J-I phase changes), (Fv/Fm) and (Fk/Fj) ratios. However, a considerable decrease of all these parameters was observed under severe osmotic stress (PEG + NaCl). The thylakoid proteome analysis revealed 58 proteins showing a significant variation in their abundance between treatments (up or down regulation). The combined treatment (PEG + NaCl) induced a decrease in the expression of the whole PSII core subunit (D1, D2, CP43, CP47, PsbE and PsbH), whereas the OEC subunits proteins remained constant. An increase in the amount of PsaD, PsaE, PsaF, PsaH, PsaK and PsaN was detected under drought stress (PEG5%). No significant change in the accumulation of Cyt b6 and Cyt f was observed. Some regulated proteins involved in cellular redox homeostasis were detected (glutamine synthetase, phosphoglycerate kinase, transketolase), and showed a significant decrease under the combined treatment. Some oxidative stress related proteins were significantly up-regulated under salt or drought stress and could play a crucial role in the PSI photoprotection and the control of ROS production level.


Assuntos
Secas , Proteoma , Salinidade , Tilacoides
4.
Plant Physiol Biochem ; 164: 222-236, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34010782

RESUMO

Soil salinity is one of the most important environmental factors that adversely affect plant growth and productivity. Quinoa emerges as a good food candidate due to its exceptional nutritive value, and its adaptability to various abiotic stresses. This high quinoa potential was investigated in the present study by evaluating the impact of salinity and post-stress restorative processes, in order to test how a pulse of saline water affects the growth and survival of two quinoa genotypes differing in salt resistance, Kcoito (salt sensitive) and UDEC-5 (salt resistant). Plants established in non-saline nutrient solution (hydroponic system) were exposed to a pulse of 0, 100 and 300 mM NaCl salinity for three weeks followed by four weeks in nutrient solution. Both genotypes survived exposure to salinity pulses. After stress removal, only the salt resistant variety UDEC-5 presented a significant stimulation of growth above the level of the non-pulsed treatment. Furthermore, the two varieties showed different responses in physiological, biochemical and antioxidant parameters. Again, the salinity release was highly controlled in pulsed UDEC-5 and more targeted as in Kcoito. In a win-win situation, the NaCl remaining in the tissues was used from UDEC-5 to optimize water uptake (osmotic force), to release vacuolar nutrients to enhance indirectly photosynthesis and to reduce ionic burden. This straightforward adjustment was accompanied by priming-effects such as a high proline accumulation and a balanced oxidative stress defense to scavenge remaining toxic reactive oxygen species (ROS), to stabilize enzymes and to be poised and to reduce lipid peroxidation and membrane damage. It can be concluded, that both species can tolerate short periods of exposure to saline conditions and this gives some flexibility of transient or permanent irrigation with saline water. However, taken together all of these markers indicate that only UDEC-5 quinoa can utilize salinity pulses in the applied range to enhance, growth, their antioxidant defense and water relations even above the level of non-pulsed plants.


Assuntos
Chenopodium quinoa , Antioxidantes , Genótipo , Salinidade , Cloreto de Sódio/farmacologia
5.
Plant Physiol Biochem ; 163: 215-229, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33862501

RESUMO

The aim of this study was to investigate the effect of NaCl salinity (0, 100 and 300 mM) on the individual response of the quinoa varieties Kcoito (Altiplano Ecotype) and UDEC-5 (Sea-level Ecotype) with physiological and proteomic approaches. Leaf protein profile was performed using two dimensional gel electrophoresis (2-DE). UDEC-5 showed an enhanced capacity to withstand salinity stress compared to Kcoito. In response to salinity, we detected overall the following differences between both genotypes: Toxicity symptoms, plant growth performance, photosynthesis performance and intensity of ROS-defense. We found a mirroring of these differences in the proteome of each genotype. Among the 700 protein spots reproducibly detected, 24 exhibited significant abundance variations between samples. These proteins were involved in energy and carbon metabolism, photosynthesis, ROS scavenging and detoxification, stress defense and chaperone functions, enzyme activation and ATPases. A specific set of proteins predominantly involved in photosynthesis and ROS scavenging showed significantly higher abundance under high salinity (300 mM NaCl). The adjustment was accompanied by a stimulation of various metabolic pathways to balance the supplementary demand for energy or intermediates. However, the more salt-resistant genotype UDEC-5 presented a beneficial and significantly higher expression of nearly all stress-related altered enzymes than Kcoito.


Assuntos
Chenopodium quinoa , Salinidade , Genótipo , Folhas de Planta , Proteínas de Plantas/genética , Proteômica , Tolerância ao Sal/genética
6.
Biochim Biophys Acta Bioenerg ; 1862(5): 148383, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33513364

RESUMO

Drought is an abiotic scourge, one of the major environmental stress factors that adversely affect plant growth and photosynthesis machinery through a disruption of cell organelles, arrangement thylakoid membranes and the electron transport chain. Herein, we probed the effect of drought stress on photosynthetic performance of Chenopodium quinoa Willd. Beforehand, plants were subjected to water deficit (as 15% Field Capacity, FC) for one (D-1W) or two weeks (D-2W), and were then re-watered at 95% FC for 2 weeks. Light and electron microscopy analysis of leaves showed no apparent changes in mesophyll cell organization and chloroplast ultrastructure after one week of drought stress, while a swelling of thylakoids and starch accumulation were observed after the prolonged drought (D-2W). The latter induced a decrease in both PSI and PSII quantum yields which was accompanied by an increase in F0 (minimum fluorescence) and a decline in Fm (maximum fluorescence). Drought stress influenced the fluorescence transients, where the major changes at the OJIP prompt FI level were detected in the OJ and IP phases. Prolonged drought induced a decrease in chl a fluorescence at IP phase which was readjusted and established back after re-watering and even more an increase was observed after 2 weeks of recovery. The maximum quantum yield of primary photochemistry (φPo) was unaffected by the different drought stress regimes. Drought induced an increase in the ABS/RC and DI0/RC ratios which was concurrent to a stable φPo (maximum quantum yield of PSII primary photochemistry). A substantial decrease in PI(ABS) was detected especially, during severe drought stress (D-2W) suggesting a drop in the PSII efficiency and the level of electron transport through the plastoquinone pool (PQ pool) towards oxidized PSI RCs (P700+). The immunoblot analysis of the main PSII proteins revealed considerable changes in the D1, D2, CP47, OEC, PsbQ and LHCII proteins under drought. These changes depend on the stress duration and recovery period. The main message of this investigation is the elevated recovery capacities of PSII and PSI photochemical activities after re-watering.


Assuntos
Chenopodium quinoa/fisiologia , Cloroplastos/metabolismo , Secas , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Estresse Fisiológico , Transporte de Elétrons , Recuperação de Função Fisiológica
7.
Biochim Biophys Acta Bioenerg ; 1859(12): 1274-1287, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30342039

RESUMO

Plants show complex responses to abiotic stress while, the effect of the stress combinations can be different to those seen when each stress is applied individually. Here, we report on the effects of salt and/or cadmium on photosynthetic apparatus of Thellungiella salsuginea. Our results showed a considerable reduction of plant growth with some symptoms of toxicity, especially with cadmium treatment. The structural integrity of both photosystems (PSI and PSII) was mostly maintained under salt stress. Cadmium induced a considerable decrease of both PSI and PSII quantum yields and the electron transport rate ETR(I) and ETR(II) paralleled by an increase of non-photochemical quenching (NPQ). In addition, cadmium alone affects the rate of primary photochemistry by an increase of fluorescence at O-J phase and also the photo-electrochemical quenching at J-I phase. A positive L-band appeared with (Cd) treatment as an indicator of lower PSII connectivity, and a positive K-band reflecting the imbalance in number of electrons at donor and acceptor side. In continuity to our previous studies which showed that NaCl supply reduced Cd2+ uptake and limited its accumulation in shoot of divers halophyte species, here as a consequence, we demonstrated the NaCl-induced enhancement effect of Cd2+ toxicity on the PSII activity by maintaining the photosynthetic electron transport chain as evidenced by the differences in ψO, φEo, ABS/RC and TR0/RC and by improvement of performance index PI(ABS), especially after short time of treatment. A significant decrease of LHCII, D1 and CP47 amounts was detected under (Cd) treatment. However, NaCl supply alleviates the Cd2+ effect on protein abundance including LHCII and PSII core complex (D1 and CP47).


Assuntos
Brassicaceae/fisiologia , Cádmio/farmacologia , Fotossíntese/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Biomassa , Brassicaceae/efeitos dos fármacos , Brassicaceae/crescimento & desenvolvimento , Clorofila/metabolismo , Transporte de Elétrons , Fluorescência , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Tilacoides/metabolismo
8.
J Photochem Photobiol B ; 183: 275-287, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29751261

RESUMO

Salinity is one of the most important abiotic stress affecting plant growth and productivity worldwide. Photosynthesis, together with cell growth, is among the primary process affected by salinity. Here, we report the effects of salt stress on photosynthesis in the model halophyte Thellungiella salsuginea. Plants were grown in hydroponic system and then treated for 2 weeks with different NaCl concentrations (0, 100, 200 and 400 mM). Leaf analysis using both photonic and transmission electron microscopes showed some changes in mesophyll cell organization, including shape and dimension. Under high NaCl concentration (400 mM) a swelling of thylakoids and starch accumulation was also observed. The obtained results also showed a change in the photosynthetic efficiency of both photosystems (PSI and PSII), depending on both NaCl concentrations and duration of the stress treatment. Under moderate salinity (100 and 200 mM NaCl) no significant variation was observed in PSI and PSII yield parameters. Chlorophyll a fluorescence transient showed some variations in OJ, JI and IP phases under salt stress depending also on NaCl levels and the duration of stress. Under high salinity PSII donor side was affected as well as quantum yield of PSI which also showed a donor side limitation. A significant decrease on quantum yields Y(I) and Y(II) under high salt treatment (400 mM NaCl) for prolonged period of time (15 days) was observed. The decrease of these parameters was quantitatively compensated by a corresponding increase of energy thermal dissipation Y(NPQ) in photosystem II and a increase in the Y(ND) in PSI. Analysis of derived parameters from the OJIP transient curve revealed that ABS/RC decreased under NaCl treatment by reason of the increase in size of antenna of active reaction centers. An increase in the performance index PI(ABS), a slight decrease in the rate of DIO/RC, TRO/RC and the level of electron transport per PSII RC (ETO/RC) were observed during the first days of salt stress treatment reflecting a high PSII efficiency.


Assuntos
Cloroplastos/ultraestrutura , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Brassicaceae/efeitos dos fármacos , Brassicaceae/metabolismo , Clorofila/metabolismo , Clorofila A , Cloroplastos/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Espectrometria de Fluorescência , Amido/metabolismo , Tilacoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...